Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 168847, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38036127

RESUMO

Rice, which feeds more than half of the world's population, confronts significant challenges due to environmental and climatic changes. Abiotic stressors such as extreme temperatures, drought, heavy metals, organic pollutants, and salinity disrupt its cellular balance, impair photosynthetic efficiency, and degrade grain quality. Beneficial microorganisms from rice and soil microbiomes have emerged as crucial in enhancing rice's tolerance to these stresses. This review delves into the multifaceted impacts of these abiotic stressors on rice growth, exploring the origins of the interacting microorganisms and the intricate dynamics between rice-associated and soil microbiomes. We highlight their synergistic roles in mitigating rice's abiotic stresses and outline rice's strategies for recruiting these microorganisms under various environmental conditions, including the development of techniques to maximize their benefits. Through an in-depth analysis, we shed light on the multifarious mechanisms through which microorganisms fortify rice resilience, such as modulation of antioxidant enzymes, enhanced nutrient uptake, plant hormone adjustments, exopolysaccharide secretion, and strategic gene expression regulation, emphasizing the objective of leveraging microorganisms to boost rice's stress tolerance. The review also recognizes the growing prominence of microbial inoculants in modern rice cultivation for their eco-friendliness and sustainability. We discuss ongoing efforts to optimize these inoculants, providing insights into the rigorous processes involved in their formulation and strategic deployment. In conclusion, this review emphasizes the importance of microbial interventions in bolstering rice agriculture and ensuring its resilience in the face of rising environmental challenges.


Assuntos
Oryza , Mudança Climática , Estresse Fisiológico , Interações Microbianas , Solo
2.
Ecotoxicol Environ Saf ; 254: 114760, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907093

RESUMO

Microbial bioremediation of heavy metal-polluted soil is a promising technique for reducing heavy metal accumulation in crops. In a previous study, we isolated Bacillus vietnamensis strain 151-6 with a high cadmium (Cd) accumulation ability and low Cd resistance. However, the key gene responsible for the Cd absorption and bioremediation potential of this strain remains unclear. In this study, genes related to Cd absorption in B. vietnamensis 151-6 were overexpressed. A thiol-disulfide oxidoreductase gene (orf4108) and a cytochrome C biogenesis protein gene (orf4109) were found to play major roles in Cd absorption. In addition, the plant growth-promoting (PGP) traits of the strain were detected, which enabled phosphorus and potassium solubilization and indole-3-acetic acid (IAA) production. Bacillus vietnamensis 151-6 was used for the bioremediation of Cd-polluted paddy soil, and its effects on growth and Cd accumulation in rice were explored. The strain increased the panicle number (114.82%) and decreased the Cd content in rice rachises (23.87%) and grains (52.05%) under Cd stress, compared with non-inoculated rice in pot experiments. For field trials, compared with the non-inoculated control, the Cd content of grains inoculated with B. vietnamensis 151-6 was effectively decreased in two cultivars (low Cd-accumulating cultivar: 24.77%; high Cd-accumulating cultivar: 48.85%) of late rice. Bacillus vietnamensis 151-6 encoded key genes that confer the ability to bind Cd and reduce Cd stress in rice. Thus, B. vietnamensis 151-6 exhibits great application potential for Cd bioremediation.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Cádmio/metabolismo , Oryza/metabolismo , Biodegradação Ambiental , Poluentes do Solo/análise , Metais Pesados/metabolismo , Grão Comestível/química , Solo
3.
Phys Rev E ; 105(5-1): 054409, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706189

RESUMO

Many fast renewing tissues have a hierarchical structure. Tissue-specific stem cells are at the root of this cellular hierarchy, which give rive to a whole range of specialized cells via cellular differentiation. However, increasing evidence shows that the hierarchical structure can be broken due to cellular dedifferentiation in which cells at differentiated stages can revert to the stem cell stage. Dedifferentiation has significant impacts on many aspects of hierarchical tissues. Here we investigate the effect of dedifferentiation on noise propagation by developing a stochastic model composed of different cell types. The moment equations are derived, via which we systematically investigate how the noise in the cell number is changed by dedifferentiation. Our results suggest that dedifferentiation have different effects on the noises in the numbers of stem cells and nonstem cells. Specifically, the noise in the number of stem cells is significantly reduced by increasing dedifferentiation probability. Due to the dual effect of dedifferentiation on nonstem cells, however, more complex changes could happen to the noise in the number of nonstem cells by increasing dedifferentiation probability. Furthermore, it is found that even though dedifferentiation could turn part of the noise propagation process into a noise-amplifying step, it is very unlikely to turn the entire process into a noise-amplifying cascade.

4.
Int J Clin Pract ; 2022: 6498794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685552

RESUMO

Aim: To explore the potential relationship between NLR and micronutrient deficiency in patients with severe COVID-19 infection. Methods: Sixteen patients were categorized into the mild group (mild COVID-19) and severe group (severe COVID-19) based on the guideline of the management of COVID-19. The lactate dehydrogenase (LDH); superoxide dismutase (SOD), the inflammatory markers (neutrophil lymphocyte ratio (NLR)), erythrocyte sedimentation rate (ESR), c-reactive protein (CRP), selenium (Se), iron (Fe), zinc (Zn), nickel (Ni), copper (Cu), chromium (Cr), cadmium (Cd), arsenic (As), and manganese (Mn) were measured in the blood. Results: Compared to the mild group, the NLR (P < 0.05) and the level of Se (P < 0.01), Fe (P < 0.05), and Zn (P < 0.05) were significantly decreased in the severe group. The level of Se, Fe, and Zn was significantly correlated to NLR levels. Furthermore, close positive correlation was found between NLR and severity of COVID-19. Conclusion: The micronutrient deficiency in the blood is associated with NLR in the severity of COVID-19 patients.


Assuntos
COVID-19 , Neutrófilos , Humanos , Linfócitos , Micronutrientes , Zinco
5.
Appl Microbiol Biotechnol ; 105(21-22): 8517-8529, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34609525

RESUMO

Recently, cadmium (Cd) contamination in paddy soils has become a highly concerning pollution problem. Endophytic microbes in rice not only affect the plant growth but also contribute to ion absorption by the roots. Therefore, they are a promising, ecologically sound means of reducing the Cd transport from soils to shoots and grains of the plant. In this study, a Cd-resistant endophytic bacterium, named 181-22, with high Cd absorption capacity (90.8%) was isolated from the roots of rice planting in heavily Cd-contaminated paddy soils and was identified as Bacillus koreensis CGMCC 19,468. The strain significantly increased fresh weight of roots and shoots (44.4% and 42.7%) and dry weight of roots and shoots (71.3% and 39.9%) and decreased Cd content in the rice roots (12.8%), shoots (34.3%), and grains (39.1%) under Cd stress compared to uninoculated plant by colonizing rice roots via seed inoculation. Moreover, colonization of 181-22 reprogrammed rice physiology to alleviate Cd stress by increasing pigment and total protein content, regulating Cd-induced oxidative stress enzymes such as superoxide dismutase and catalase and reducing malondialdehyde. Thus, B. koreensis 181-22 has the potential to protect rice against Cd stress and can be used as a biofertilizer to bioremediate paddy soils contaminated with Cd. KEY POINTS: • Bacillus koreensis 181-22 colonized the inside of rice roots at high numbers via seed inoculation. • B. koreensis 181-22 promoted rice growth and decreased Cd accumulation in grains. • B. koreensis 181-22 regulated the physiological response to alleviated Cd stress in rice.


Assuntos
Bacillus , Oryza , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
6.
Front Microbiol ; 12: 698834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367100

RESUMO

Microorganisms play an important role in the remediation of cadmium pollution in the soil and their diversity can be affected by cadmium. In this study, the bacterial community in arable soil samples collected from two near geographical sites, with different degrees of cadmium pollution at three different seasons, were characterized using Illumina MiSeq sequencing. The result showed that cadmium is an important factor to affect the bacterial diversity and the microbial communities in the high cadmium polluted area (the site H) had significant differences compared with low cadmium polluted area (the site L). Especially, higher concentrations of Cd significantly increased the abundance of Proteobacteria and Gemmatimonas whereas decreased the abundance of Nitrospirae. Moreover, 42 Cd-resistant bacteria were isolated from six soil samples and evaluated for potential application in Cd bioremediation. Based on their Cd-MIC [minimum inhibitory concentration (MIC) of Cd2+], Cd2+ removal rate and 16S rDNA gene sequence analyses, three Burkholderia sp. strains (ha-1, hj-2, and ho-3) showed very high tolerance to Cd (5, 5, and 6 mM) and exhibited high Cd2+ removal rate (81.78, 79.37, and 63.05%), six Bacillus sp. strains (151-5,151-6,151-13, 151-20, and 151-21) showed moderate tolerance to Cd (0.8, 0.4, 0.8, 0.4, 0.6, and 0.4 mM) but high Cd2+ removal rate (84.78, 90.14, 82.82, 82.39, 81.79, and 84.17%). Those results indicated that Burkholderia sp. belonging to the phylum Proteobacteria and Bacillus sp. belonging to the phylum Firmicutes have developed a resistance for cadmium and may play an important role in Cd-contaminated soils. Our study provided baseline data for bacterial communities in cadmium polluted soils and concluded that Cd-resistant bacteria have potential for bioremediation of Cd-contaminated soils.

7.
Ann Hum Genet ; 85(6): 221-234, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34185889

RESUMO

In the early 2000s, emerging SARS-CoV-2, which is highly pathogenic, posed a great threat to public health. During COVID-19, epigenetic regulation is deemed to be an important part of the pathophysiology and illness severity. Using the Illumina Infinium Methylation EPIC BeadChip (850 K), we investigated genome-wide differences in DNA methylation between healthy subjects and COVID-19 patients with different disease severities. We conducted a combined analysis and selected 35 "marker" genes that could indicate a SARS-CoV-2 infection, including 12 (ATHL1, CHN2, CHST15, CPLX2, CRHR2, DCAKD, GNAI2, HECW1, HYAL1, MIR510, PDE11A, and SMG6) situated in the promoter region. The functions and pathways of differentially methylated genes were enriched in biological processes, signal transduction, and the immune system. In the "Severe versus Mild" group, differentially methylated genes, after eliminating duplicates, were used for PPI analyses. The four hub genes (GNG7, GNAS, PRKCZ, and PRKAG2) that had the highest degree of nodes were identified and among them, GNG7 and GNAS genes expressions were also downregulated in the severe group in sequencing results. Above all, the results suggest that GNG7 and GNAS may play a non-ignorable role in the progression of COVID-19. In conclusion, the identified key genes and related pathways in the current study can be used to study the molecular mechanisms of COVID-19 and may provide possibilities for specific treatments.


Assuntos
COVID-19/genética , COVID-19/patologia , Metilação de DNA/genética , Epigênese Genética/genética , Índice de Gravidade de Doença , Adulto , Cromograninas/genética , Ilhas de CpG/genética , Epigenoma/genética , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Marcadores Genéticos/genética , Humanos , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2
8.
BMC Microbiol ; 20(1): 18, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964334

RESUMO

BACKGROUND: Cadmium (Cd) is a severely toxic heavy metal to most microorganisms. Many bacteria have developed Cd2+ resistance. RESULTS: In this study, we isolated two different Cd2+ resistance Bacillus sp. strains, Bacillus vietamensis 151-6 and Bacillus marisflavi 151-25, which could be grown in the presence of Cd2+ at concentration up to 0.3 mM and 0.8 mM, respectively. According to the genomic sequencing, transcriptome analysis under cadmium stress, and other related experiments, a gene cluster in plasmid p25 was found to be a major contributor to Cd2+ resistance in B. marisflavi 151-25. The cluster in p25 contained orf4802 and orf4803 which encodes an ATPase transporter and a transcriptional regulator protein, respectively. Although 151-6 has much lower Cd2+ resistance than 151-25, they contained similar gene cluster, but in different locations. A gene cluster on the chromosome containing orf4111, orf4112 and orf4113, which encodes an ATPase transporter, a cadmium efflux system accessory protein and a cadmium resistance protein, respectively, was found to play a major role on the Cd2+ resistance for B. vietamensis 151-6. CONCLUSIONS: This work described cadmium resistance mechanisms in newly isolated Bacillus vietamensis 151-6 and Bacillus marisflavi 151-25. Based on homologies to the cad system (CadA-CadC) in Staphylococcus aureus and analysis of transcriptome under Cd2+ induction, we inferred that the mechanisms of cadmium resistance in B. marisflavi 151-25 was as same as the cad system in S. aureus. Although Bacillus vietamensis 151-6 also had the similar gene cluster to B. marisflavi 151-25 and S. aureus, its transcriptional regulatory mechanism of cadmium resistance was not same. This study explored the cadmium resistance mechanism for B. vietamensis 151-6 and B. marisflavi 151-25 and has expanded our understanding of the biological effects of cadmium.


Assuntos
Bacillus/crescimento & desenvolvimento , Cádmio/farmacologia , Farmacorresistência Bacteriana , ATPases do Tipo-P/genética , Bacillus/efeitos dos fármacos , Bacillus/genética , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Óperon , Plasmídeos/genética , Sequenciamento Completo do Genoma
9.
Front Microbiol ; 10: 278, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30842762

RESUMO

Cadmium (Cd) is a heavy metal that is extremely toxic to many organisms; however, microbes are highly adaptable to extreme conditions, including heavy metal contamination. Bacteria can evolve in the natural environment, generating resistant strains that can be studied to understand heavy-metal resistance mechanisms, but obtaining such adaptive strains usually takes a long time. In this study, the genome replication engineering assisted continuous evolution (GREACE) method was used to accelerate the evolutionary rate of the Escherichia coli genome to screen for E. coli mutants with high resistance to cadmium. As a result, a mutant (8mM-CRAA) with a minimum inhibitory concentration (MIC) of 8 mM cadmium was generated; this MIC value was approximately eightfold higher than that of the E. coli BL21(DE3) wild-type strain. Sequencing revealed 329 single nucleotide polymorphisms (SNPs) in the genome of the E. coli mutant 8mM-CRAA. These SNPs as well as RNA-Seq data on gene expression induced by cadmium were used to analyze the genes related to cadmium resistance. Overexpression, knockout and mutation of the htpX (which encodes an integral membrane heat shock protein) and gor (which encodes glutathione reductase) genes revealed that these two genes contribute positively to cadmium resistance in E. coli. Therefore, in addition to the previously identified cadmium resistance genes zntA and capB, many other genes are also involved in bacterial cadmium resistance. This study assists us in understanding the mechanism of microbial cadmium resistance and facilitating the application of heavy-metal remediation.

10.
Sci Rep ; 8(1): 14252, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250139

RESUMO

The multicopper oxidase CueO is involved in copper homeostasis and copper (Cu) tolerance in Escherichia coli. The laccase activity of CueO G304K mutant is higher than wild-type CueO. To explain this increase in activity, we solved the crystal structure of G304K mutant at 1.49 Å. Compared with wild-type CueO, the G304K mutant showed dramatic conformational changes in methionine-rich helix and the relative regulatory loop (R-loop). We further solved the structure of Cu-soaked enzyme, and found that the addition of Cu ions induced further conformational changes in the R-loop and methionine-rich helix as a result of the new Cu-binding sites on the enzyme's surface. We propose a mechanism for the enhanced laccase activity of the G304K mutant, where movements of the R-loop combined with the changes of the methionine-rich region uncover the T1 Cu site allowing greater access of the substrate. Two of the G304K double mutants showed the enhanced or decreased laccase activity, providing further evidence for the interaction between the R-loop and the methionine-rich region. The cuprous oxidase activity of these mutants was about 20% that of wild-type CueO. These structural features of the G304K mutant provide clues for designing specific substrate-binding mutants in the biotechnological applications.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Lacase/química , Oxirredutases/química , Conformação Proteica , Sequência de Aminoácidos/genética , Sítios de Ligação/genética , Cobre/química , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Lacase/genética , Metionina/genética , Modelos Moleculares , Mutação , Oxirredutases/genética , Oxirredutases/ultraestrutura , Estrutura Terciária de Proteína , Especificidade por Substrato
11.
Int J Biol Macromol ; 119: 597-603, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30071224

RESUMO

Metal-binding proteins play an important role in maintaining intracellular metal homeostasis and eliminating heavy metal toxification. Many metallothioneins (MTs) have been isolated from mammalian sources, which are a family of low molecular weight metal-binding proteins that are rich in cysteine. However, plants contain a different type of cadmium-binding protein that contain fewer cysteine residues. In this study, cadmium affinity chromatography coupled with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) has been used to separate and identify cadmium-binding proteins from different parts (root, stem, leaf and grain) of rice (Oryza sativa L.) cultivated under cadmium stress conditions. Seven cadmium-binding proteins with low isoelectric points containing relatively few cysteine residues were chosen for expression in Escherichia coli. The cadmium removal efficiency of protein A3AGZ4 (OsJ_10480) from Escherichia coli △zntA-BL21 was the highest (57.35%), which compares favorably with the cadmium removal efficiency of metallothionein MT (48.99%, mt from mouse,) and SMT (55.84%, smt from Sinopotamon honanense). In addition, for the strain A3AGZ4-△zntA-BL21, most of the bound cadmium was found to accumulate in the cytoplasm and not the cell wall. These results indicate that these plant proteins can bind cadmium to reduce heavy metal toxicity, thus contributing towards bioremediation of cadmium in the environment.


Assuntos
Metalotioneína/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Biodegradação Ambiental , Cádmio/isolamento & purificação , Cádmio/metabolismo , Transporte Proteico
12.
J Agric Food Chem ; 60(17): 4314-9, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22494407

RESUMO

In this study, novel endophytic fungi producing cajaninstilbene acid (CSA) from pigeon pea [ Cajanus cajan (L.) Millsp.] were investigated and screened. CSA has prominent pharmacological activities. A total of 110 endophytic fungi isolates were grouped into 8 genera on the basis of morphological characteristics, and CSA-producing fungi were screened by liquid chromatography-tandem mass spectrometry (LC-MS/MS). According to ITS-rDNA sequences analysis, the CSA-producing fungi were identified as Fusarium solani (ERP-07), Fusarium oxysporum (ERP-10), and Fusarium proliferatum (ERP-13), respectively. The amount of CSA produced by the ERP-13 reached 504.8 ± 20.1 µg/L or 100.5 ± 9.4 µg/g dry weight of mycelium. In a DPPH radical-scavenging assay, when the concentration of fungal CSA was 500 µg/mL, inhibition percentage could reach 80%, which was almost the same as that of standard CSA. This study first reported the natural antioxidant CSA from endophytic fungi F. solani and F. proliferatum isolated from pigeon pea.


Assuntos
Antioxidantes/metabolismo , Cajanus/microbiologia , Fusarium/metabolismo , Salicilatos/metabolismo , Estilbenos/metabolismo , Antioxidantes/farmacologia , DNA Fúngico/análise , DNA Fúngico/química , Fusarium/classificação , Fusarium/genética , Filogenia , Salicilatos/análise , Salicilatos/farmacologia , Análise de Sequência de DNA , Estilbenos/análise , Estilbenos/farmacologia
13.
J Agric Food Chem ; 58(8): 4737-43, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20205393

RESUMO

The antioxidant capacity and xanthine oxidase inhibitory effects of extracts and main polyphenolic compounds of Geranium sibiricum were studied in the present work. The antioxidant capacity was evaluated by ferric reducing antioxidant power, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, superoxide radical scavenging, nitric oxide scavenging, beta-carotene-linoleic acid bleaching, and reducing power assays. Among the extracts and four fractions, the ethyl acetate fraction showed the highest phenolic content (425.36 +/- 9.70 mg of gallic acid equivalent/g extracts) and the best antioxidant activity. The IC(50) values of the ethyl acetate fraction were 0.93, 3.32, 2.06, 2.66, and 1.64 microg/mL in the DPPH radical scavenging, superoxide radical scavenging, nitric oxide scavenging, beta-carotene-linoleic acid bleaching, and reducing power assays, respectively. Of the polyphenolic compounds separated from the ethyl acetate fraction, geraniin showed a higher activity than corilagin and gallic acid. The IC(50) values ranged from 0.87 to 2.53 microM, which were even lower than the positive control (except for allopurinol). All test samples except for the petroleum ether fraction showed xanthine oxidase inhibitory effects. We conclude that G. sibiricum represents a valuable natural antioxidant source and is potentially applicable in the healthy food industry.


Assuntos
Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Geranium/química , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Xantina Oxidase/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão , Polifenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...